English Speech to Sanskrit Speech Translator

Abhradecp Guha Thakurta! Ashwath Kumar. K2 and Hashir Khan?
guhathakurta.abhradeecp@gmail.com? kashwathkumar@gmail.com?
hash9r@gmail.com3

National Institute of Technology Karnataka, Surathkal, India

Abstract. This paper presents a design level detail with an implemen-
tation insight of an English to Sanskrit Speech Translator that obtains a
translation accuracy roughly 80% which is at par with similar systems
developed using interlingua-based approach. The system uses both an
Adaptive approach and a Non-Adaptive approach to perform the pro-
cess of Language translation. The adaptive tools include Hidden Markov
Model and Maximum Entropy framework whereas the Non-Adaptive
techniques include Paninian grammar based parse tree mapping, tech-
niques to restructure the words in the target sentence to conform to
Indian Languages sentence structure, Longest Common Sequence based
syllable splitter and heuristics based Text to Speech translator. Though
the adaptive techniques that have been used are readily available but the
total set of Non-Adaptive techniques and the method of integrating all
the components is a unique design technique framed independently by us.
The observed translating time of the system is approximately linear with
respect to the input sentence. Furthermore, the system is able to trans-
late sentences spoken in normal human speed with a rationally minimal
time delay. For this reason this it can be used for online speech trans-
lation for all practical purposes. Keywords: Paninian, Longest Common
Sequence, Parser,Maximum Entropy, Hidden Markov Model.

1 Introduction

Sanskrit has a very strong grammar structure and is the origin of many Indian
languages. This makes it an excellent networking language which would facil-
itate the extension of the translator to other Indian languages. A translation
scheme of this sort will have limitless applications in a land of such great diver-
sity. Not only can this be extended to other Indian languages, a similar scheme
may be used to create a translator from Indian languages to English through
Sanskrit. The system under consideration is cssentially grounded on four basic
computational models. First, thc HMM (Hidden Markov Model), Second, Maxi-
mum Entropy Modecl, Third, Paninian Grammar and Lastly on the varga based
syllable joining and smoothening. The system is segregated into three parts,
namely Speech Recognizer, Text to Text Translator (English to Sanskrit), Text
to Speech Converter.

The three modules are finally integrated to run in parallel (with locks being
implemented into them to take care of synchronization) in order to boost up

© A. Gelbukh, A. Kuri (Eds.) Received 17/06/07
Advances in Artificial Intelligence and Applications Accepted 31/08/07
Research in Computer Science 32, 2007, pp. 363-373 Final version 22/09/07

364 Abhradeep Guha Thakurta, Ashwath Kumar K., Hashir Khan

the performance. A detailed discussion on each of these sections will be dealt
throughout the course of this paper. .

The Online Speech recognizer uses Hidden Markov Model[1] as the Finite
State Automata for recognition of the words. It essentially uses Tied State based
Silence model[1] with a special short pause model also called the tee model. The
signal conditioning and the signal analysis is done with the help of Triangular
Filters MFCC (Mel Frequency Cepstrum Coefficient).

The English to Sanskrit Tex translator essentially banks on Maximum En-
tropy based English Parser[2] and Context Free Paninian grammar (3]. The
parser has a parsing accuracy of 86%. The parser runs linear with respect to
the sentence length. The context free grammar based Parse Tree Mapper for
English to Sanskrit uses essentially the grammar foundation laid by Panini. We
assumed the language to context free mainly because of the fact that English
is proven to be 85% context free, so for all practical purposes we can assume
a context free scenario. We have devised a unique technique to restructure the
Sanskrit sentence to follow Indian Language form which essentially makes the
language nice to comprehend. We have used the most prominent classcs of sen-
tences as background for designing. Though the class list used is not exhaustive,
further additions can be made with ease due to the open architecture of the
system.

Sanskrit is a phonographic language, so a phonological breakup of the words
is a very feasible option for deriving the underlying syllables. We use our self
designed algorithm for splitting up of words into their syllables. The algorithm is
mainly based on Longest Sequence Match. This whole module is independently
designed by us and it has accuracy which is comparable to systems like FESTI-
VAL and MBROLA. For all practical purposes we have used ITRANS and C9
tagset as the language representation format.

2 English Speech to English Text Conversion

The baseline system uses the HMM-LR method, which is an integration of Hid-
den Markov Models [1] and generalized LR parsing [1]. In this method, the
LR parsing table is used to predict phoneme candidates in speech, then these
phoneme candidates are verified using the HMM phoneme models. Thus, the
LR parser can be regarded as a language source model for wordtphoneme pre-
diction/generation. The following describes the basic mechanism of HMM-LR.
First, the system picks up all phonemes predicted by the initial state of the LR
parsing table and invokes the HMMs to verify the cxistence of these predicted
phonemes. During this process, all possible partial parses are constructed in par-
allel. The HMM phoneme verifier receives a probability array which includes end
point candidates and their probabilities, and updates it using an HMM probabil-
ity calculation process. This probability array is attached to each partial parsc.
When the highest probability in the array is lower than a threshold level, the
partial parse is pruned. The parsing process proceeds in this way, and stops if
the parser detects-an accept action in the LR parsing table. A very accurate,

English Speech to Sanskrit Speech Translator ~ 365

efficient parsing method is achieved through the integrated processes of speech
recognition and language analysis.

HMM phone models | wmmm Lookup TR
l“ 1
..... / g_g& HMM-LR 2 e
e P o e
(Q 2
“- {'_\ g.g‘g" Pro-compile

Recognition results

Verifiention
Input speech !

o

Fig. 1. HMM and LR based Automatic Speech Recognizer

3 English Text to Sanskrit Text Conversion

The English to Sanskrit Text Translator module is composed of three major sec-
tions. First, the Maximum Entropy based Parser, Second, the Parse tree Mapper
between English and Sanskrit and Third, the positioning of the Sanskrit words
to match Indian Language grammar form. The essence of the first two sections
is inherent in the problem itself. But the third section is more of a nice to have
feature than a must have feature. Sanskrit being a position independent lan-
guage it is really not necessary to have a rigid positioning standard. But in most
of the Indian scripts it follows a particular positioning norm which is equivalent
to any Devanagari language (including Hindi). The inclusion of the positioning
section is mostly to bring a smoothening effect in the language.

3.1 Maximum Entropy Parser

The parser uses four procedures, TAG, CHUNK, BUILD, and CHECK, that
incrementally build parse trees with their actions. The procedures are applied in
three left-to-right passes over the input sentence; the first pass applies TAG, the
second pass applies CHUNK, and the third pass applies BUILD and CHECK.
The passes, the procedures they apply, and the actions of the procedures are
summarized in Table and described below.

First Pass The first pass takes an input sentence and uses TAG to assign each
word a POS tag. The result of applying TAG to each word is shown in figure 2.

366 Abhradeep Guha Thakurta, Ashwath Kumar K., Hashir Khan

Pass Procedure Actions Description

First Pass TAG A POS tag in tag set Assign POS Tag to word
Second Pass CHUNK Start X, Join X, Other Assign Chunk tag to POS tag and word

Third Pass BUILD Start X, Join X where X isa Assign current tree to start a new
stituent label in label set constituent, or to join the previous one

con

CHECK Yes, No Decide if current constituent is completel

Table 1. Procedures for Parsing

PRP VBD DT NN IN DT NN

| | |
{ sa'w cll:e xmlm with the telescope

Fig. 2. Tagging of Sentence

Second Pass The sccond pass takes the output of the first pass and uses
CHUNK to determine the ”flat” phrase chunks of the sentence, where a phrase
is "flat” if and only if it is a constituent whose children consist solely of POS

tags.

NP VBD NP IN k
PRP saw DT NN with DT NN

| |] |
b¢ the man the telescopo

Fig. 3. After Chunking of the Sentence

Third Pass The third pass always alternates between the use of BUILD and
CHECK, and completes any remaining constituent structure. BUILD decides
whether a tree will start a new constituent or join the incomplete constituent
immediately to its left. The result is shown in figure 4

3.2 Maximum Entropy Framework

The predicates for TAG, CHUNK, BUILD, and CHECK arc uscd to scan the
derivations of the trees in the corpus to form the training samples 7rag, TcHUNK
rurLp and Tcppck respectively. Each training sample has the form 7 =
{(ai,b1), (a2, b2), .,an,byn)}, where a; is an action of the corresponding pro-

cedure and b; is the list of contextual predicates that were true in the context

English Speech to Sanskrit Speech Translator 367

NP VBD NP IN NP
| t N\
PRP saw DT NN wilth DT/\NN
| | |
1 the man the teles'copo

Fig. 4. After the third pass

in which al was decided.The training samples arc respectively used to create the
modecls Trac, TcHuNK, TBUILD and Tcupck all of which have the form:

k
p(a‘ b) =7 H a-jfj(a,b) (1)

1=1
where a is some action, b is some context, is a normalizing factor. a; arc the
model paramcters, 0 < a; < 00, and f;(a,b) €{0, 1} arc called features, j = 1...k.
Features cncode an action a as well as some contextual predicate ¢, that a
tree-building procedure would find useful for predicting the action a’. feature Tic
fi(a,b) = 1if c,(b) = truc && a = a, 0 otherwise for use in the corresponding
model. Each feature f; corresponds to a parameter a;, which can be viewed

as a "weight” that reflects the importance of the feature. For cach model, the
corresponding conditional probability is defined as usual

p(a,b)
plah) = =—"—"— 2)
ZQIEA p(a) b) (
Based on this we use BFS(Breadth first Scarch on the constituent trec
structures derived so far to get the parse treec with the maximum probability

3.3 Translation of Parsed English sentence to Sanskrit

Tagging based on the type In this scction the words arc tagged based on
their part of speech. We identify case, person, number and tense of the words in
this function and tag the respective words for the further translation at a later
stage. This tags arc storcd as additional information in cach node of the tree as
labels. This tagging is cssentially on the basis of Sanskrit grammar. The tagging
procceds based on the tags assigned at the English Parsing stage.

Algorithm: Sanskrit Tagger (root)
//1f the tag is DT label the current word and propagate the person to
the related verb.
//If tag is WP or WRB or any other question sentence. Label the word
as third person and propagate the tag to the related verb.
//1f tag is JJ label word as adjective.

368 Abhradeep Guha Thakurta, Ashwath Kumar K., Hashir Khan

//1f tag is CC label word as a conjunction.

//If tag is NN or NNS label the word as singular for NN and plural for
NNS, third person and propagate the same to the verb related to the
noun. Label the case of the word using the Compute().

//I1f tag is VBZ or VBP then label the word (verb) as present tense.
//I1f tag is VBD then label the word (verb) as past tense.

//If tag is MD then label the word (verb) as future tense.

//If tag is IN then label if the word is because tag as because

//1f tag is VBN or VBG then retrieve the tense label from the first
related verb. .

//1f tag is PRP$ then depending on word label word as first, second

or third person. Do the same for singular and plural. Also label word
as shashti (case).

//1f tag is PRP extract case using Compute(), check person using CheckPersoz,
Propagate the same to the related verb. This section decides the person of the
noun and the pronoun. The return values are First, Second and Third coupled

with Singular or Plural.

Algorithm: Check Person(Node)
// Check whether the node is of the type I, we or etc If yes then take
First. If You or yours then take Second. Otherwise take Third.
// Based of the number assign add Singular or Plural to the result.
This section tags the Determiner(DT). This is done after all the words arc tagged.

Algorithm:
// Check if DT is subject.
// Check if it has a related noun. If so give determiner the label the
of noun.
// Else give the determinant its own label by making it First Case.
//1f DT is object perform same steps as above. Case is found by using
the Compute(Node) in case no noun is associated.

The Compute() function is used to determine the case of the word based on
the verb using standard Paninian Grammar rules.

Final Translation This section essentially deals with converting each word and
phrase from the English sentence to its corresponding Sanskrit form following
the tagging and labeling that has been done in the previous sections.

Algorithm:
//With the word we find the root word in Sanskrit.
//The root word is found from a MySQL database. This also stores data
about where the suffix is stored.
//Based on suffix table and various tense, person, case, and number

English Speech to Sanskrit Speech Translator ~ 369

labels we find the suffix and append to get the target word.

//For special words like Adjectives and Conjunction we perform a direct
translation. This is also done where the word is independent of the
labels like certain question words and determinants.

3.4 Restructuring of the Sanskrit sentence

The basic methodology we would be adopting is that any Indian Language is of
the form <Noun Phrase> <Object> <Verb Phrase>. So the fundamentally we
would be trying to restructure the Sanskrit parse tree generated by the previous
section to meet this sentence form. Moreover during our course of work we have
identified three major classes of sentences of English Language which have to be
scparately treated to achieve the goal of restructuring. In the following section
we would be dealing with each of these class of sentences and their associated
sub classes and conversion Heuristic is detail.

Restructuring of Verb Phrase The basic difference between the sentences
in English and Indian Languages is that in English the verb is always at the
beginning of the verb phrase (VP) where as in Indian Languages the object is at
the beginning of the verb phrase. This is also true for Preposition Phrases (PP).
An example of such a conversion is given in Figure 5.

Fig. 5. Restructuring of Verb

Restructuring of WH-Phrase The class of sentences which encompass ques-
tions (essentially uses Who, What etc) are grouped together under the class
of WH Phrases. In our dealing with this type of sentences we have found that
the WH-Phrasccomes just before the principal verb in the Verb Phrase which
it refers to. So in that casc the sentences like Where were you? changes to you
where were? which correctly maps on to is corresponding Hindi counterpart. We
have used this technique for our restructuring.

370 Abhradeep Guha Thakurta, Ashwath Kumar K., Hashir Khan

Restructuring of No Sooner Than Sentences In computational linguistics
this class of sentences is referred to as inverse sentences (SINV). This kind of
sentences essentially has a to be verb (VBD) (i.c. did) and a principal verb
phrase (VP). So the fundamental approach that is followed is removing all the
nodes in the parse tree till the fundamental verb phrase and then placing no did
just after the verb of the principal verb phrase. We have used this technique for
our restructuring.

(N.B We do not claim that the classes of sentences that we have stated here
is totally cxhaustive. Its just a prototypc and cxtension is always possible on

similar lines.)

4 Sanskrit Text to Sanskrit Speech Conversion

Classical Sanskrit distinguishes 48 sounds. Some of these, arc, however, allo-
phones. The number of phonemes is smaller, at about 35. The sounds arc tradi-
tionally listed in the order vowels (Ach), diphthongs (Hal), anusvara and visarga,
stops (Spara) and nasals (starting in the back of the mouth and moving forward),
and finally the liquids and fricatives. A database of the different syllables is gen-
crated. The database consists of three different recordings namely the

Vowels 15 in number
Half matras of consonants 25 in number

Semi Vowels 10 in number
Very commonly occurring syllables - 119 in number

A syllable frequency program was run for Mahabharatha and Srecbhyasa. All
the syllables with a frequency of occurance of more than 1000 was recorded. It
can be approximated that thesc are the commonly occurring syllables in Sanskrit.
This number 1000 was just a hecuristic number. If we increase the number of
recordings, the quality of speech will be better but the spacc is a constraint. The
labeling of the syllables is done using the ITRANS format.

4.1 Algorithm

The Procedure to be followed to convert the Sanskrit Text to Specech can be
subdivided into the following steps. Since Sanskrit is a phoneme bascd language
the conversion is casier. The input text is subdivided into smaller sentences
which are again subdivided into smaller words. These words arc pronounced
using the pre recorded sounds of different syllables. The whole procedure can be
epitomized into the following steps.

Tokenize the Sanskrit sentence to extract the words. A punctuation is used
a delimiter to separatc words.

Parsc cach word into syllables based on a syllable lookup databasc. The word
is broken up based on the longest syllable match. The syllable database con-
sists of the basic vowcls, consonants and few commonly occurring syllables.

English Speech to Sanskrit Speech Translator 371

Join the sound files of the syllables to produce final sound of the word.
Smoothcning techniques are used to filter the output sound.

Join all the words with a silence (sil syllable) between them to get a contin-
uous specch.

Tokenizing The basic idea in tokenizing is to scparate a long sentence into
smaller words and phrases. So every time punctuation is cncountered a new
token is obtained. Here Punctuations are used as delimiters to scparate the

sentences into words(tokens). So cach of these tokens arc passed on to the next
stage for processing. So the Pronunciation is token by token.

Parsing During parsing each word is broken into different syllables present in
the reference syllable database. The mapping of syllables is based on the largest
syllable match. Initially depending on the syllables the program scarches for the
biggest common match between the token and the reference syllable databasc.
During this process the program starts from the left end of the token and scarchces
for the syllable with the largest match. Once it locates the largest match, it moves
on to scarch the next largest syllable match in the token.

For example the word aasthaa becomes aa/s/ th/aa where aa,s,th,aa are the
different syllables present in the reference syllable database. String function

Parse(String s)

len—length(s);

parsed_string«NULL;

count«1;

while (count<=length)

{

//From the database find the longest syllable which is a prefix to the
string s[count len] and store it in temp_str
parsed_string«—parsed_String+temp_str+/;
count«count+length(temp_str) ;

}

//Remove the extra / from the end of parsed.string
return parsed_string

Pronunciation of each word In this module all the sound files of the cor-
responding syllables arc added together to generate the sound file of the word.
When combining the sound files of two syllables filtering techniques arc used to
reduce the transitions in the pronunciation of the word. To smoothen the tran-
sition between syllables, the last 100 samples of one sound is averaged with the
first 100 samples of the next sound file and this replaces the 200 samples taken
into consideration in the final output file. The value 100 is obtained by trial and
crror. The value acutually changes depending on the vargas of the two syllables.

372 Abhradeep Guha Thakurta, Ashwath Kumar K., Hashir Khan

For a better result, different values of sample merging can be used for different
vargas and different combinations of the syllables.

The following plot (Figure 6) is obtained for the word haata. The plot is
obtained using MATLAB. It can be observed the length of the first plot is
around 12,300 samples, whereas the number of samples in the second case is
reduced. Here the merging value used is 1000. In the second waveform it can be
scen that theres a smoothened value near 8000 which is the transition from one
syllable (haa in this casc) to another syllable(tha in this case). An intermediate
value is obtained near the transition which results in a smoothened sound.

I - o R A R e R S v W (itang

. M.:

AzriRong
1 T T T T ”ll ” | ‘ 5

Fig. 6. Waveform for the word haata

Pronunciation of the whole sentence After each word is produced it is
entered into the final sound file with a silence file in between to denote a punc-
tuation. All the words produced are added to form a sentence by adding a pause
between the words. Filtering techniques are used in this module also to reduce
sharp transitions. By using the smoothening techniques the abrupt pauses are
reduced and a smoothened and continuous sound can be obtained.

Filtering The filtering and smoothening of sound files while joining two sound
files can be improved by using sophisticated filtering techniques. Here simple
average of the two sound files has been used. Some better methods like Moving

English Speech to Sanskrit Speech Translator 373

Average Filter and Weighted filters can be used. By using complicated filter-
ing techniques the computation time will increase affecting the overall time of
execution. Even with the Simple Average Filter the overlapping sample count
can be varied for different combinations of vargas. Here we have used a constant
value of 100 samples for all the cases. By doing this the delivery of sound will
have lesser transitions and the speech will be smoother compared to the original
version.

5 Experiments

We have implemented the whole system in Microsoft Visual Studio 2003. We had
tried on 35 different sentences with a word corpus of 100 words from the three
different classes of sentences defined earlier. The results
has given us a overall cfficiency of 80% which is quite high keeping in mind the
bottle neck situations of training the Speech Recognizer which drastically brings
down the efficiency. The whole source code is available with the authors. Any
onc is welcome to use it.

of the experimentation

6 Conclusion

As a part of final integration we have used a Shared Memory Model where
where we run the three sections in parallel with locks implemented in them
inorder to take care of empty or over flow of buffer. In a nutshell our effort
has been to make a standing platform for further research in the same lines.
Probably somewhere down the line a system can be made feasible which will do
Real Time Emotion Based Speech Translation. If this is achieved the language
barrier between Human races will be laid to rest forever. We hope for the best
and cncourage people to take up research work in this arca to make world a
better place to live in.

References

1. HMM Continious Speech Recognition using Stochastic Language Model.(Kenji
KITA, Takeshi KAWABATA, Toshiyuki HANAZAWA ATR Interpreting Telephony
Research Laboratories Seika-chou, Souraku-gun, Kyoto 619-02, JAPAN)

2. Linear Observed Time Statistical Parser Based on Maximum Entropy Models Ad-
wait Ratnaparkhi, Dept. of Computer and Information Science University of Penn-
sylvania.

3. 3.Panini’s Grammar and Computer Science Saroja Bhate and Subhash Kak,Annals
of the Bhandarkar Oriental Research Institute, vol. 72,1993, pp. 79-94

4. ALTERNATIVES TO SYLLABLE-BASED ACCOUNTS OF CONSONANTAL

PHONOTACTICS Donca Steriade, UCLA

. OpenNLP resources at http://opennlp.sourceforge.net

6. Syntax-based Alignment of Multiple Translations: Extracting Paraphrases and Gen-
erating New Sentences. Bo Pang, Kevin Knight, and Daniel Marcu. Proceedings of
HLT/NAACL, 2003 :

[S4}

